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Anomaly of the height-height correlation functions in self-flattening surface growth
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By Monte Carlo simulations and scaling theories, we consider the height-height correlation function
G(r ,t;L) of the one-dimensional equilibrium self-flattening surface growths, where the deposition~evapora-
tion! attempt only at the globally highest~lowest! site is suppressed.G(r ,t:L) is shown to satisfy the anoma-

lous scaling behaviorG(r ,t;L)5L2ag1(r /Ld,t/Lz) or G(r ,t;L)5t2bg2(r /t1/z8,L/t1/z). Herea, b, andz are
the roughness, growth, and dynamic exponents, respectively, for the surface width, witha51/3 andz5a/b
53/2. Anomalous exponentsz8 andd are found to satisfyz859/4 andd5z/z8. We also show that anomalous
behavior of G(r ,t;L) can be understood from a scaling theory based on the competition between local
random-walk-like behavior and the global-length-scale suppression.
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The equilibrium and dynamical properties of surfac
have been studied extensively due to the theoretical im
tance of the scaling behaviors of statistical systems in a
tion to practical reasons of predicting the long time, lar
scale surface morphology@1#. For most surface models wit
a stochastic dynamics such as growths, evaporations, or
tuations with thermal noises, it is known that the surfa
configurations show scaling behaviors. The dynamic sca
hypothesis is that in a finite system of lateral sizeL, the
standard deviation or the root mean square~rms! fluctuation
W of the surface height starting from a flat substrate scale
@1–3#

W2~ t;L !5L2agW~ t/Lz!, ~1!

wherea andz are the roughness and its dynamic expone
respectively. The scaling function has the asymptotic form
gW(x);x2b for x!1 andgW(x);const forx@1 so that the
width W(t;L) increases astb initially ( t!Lz) and saturates
to La for t@Lz, whereb5a/z.

Another way to characterize the roughness of a surfac
through the height-height correlation functionG(r ,t), de-
fined by the rms height differences between two sites se
rated by the distancer. For stochastic dynamic models@1#,
G(r ,t) also shows a similar dynamic scaling behavior,

G~r ,t !5r 2a8gG~ t/r z8!, ~2!

wherea8 and z8 are the wandering exponent and the wa
dering dynamic exponent, respectively. Normallya85a and
z85z are expected. The scaling function is also norma
expected to have the following, asymptotic behavior:

gG~x!;H x2b for x!1

const for x@1.
~3!
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However,gG(x) of some growth models@1,4–6# have been
shown to have an anomalous behavior whenx@1, such as

gG~x!;xk/z for x@1. ~4!

This anomalous behavior means that the correspond
growth models have different roughening behaviors for lo
or short length scalesl (!L) from that for the global length
scaleL.

In this study, we want to report another kind of th
anomalous behavior ofG(r ,t;L), which arises from the re-
gime of the global length scale. We studyG(r ,t;L) of the
self-flattening~SF! surface growths@7#, which is believed to
be physically related to the recently developed other surf
growth models with the global constraints@8–10#. The self-
flattening model is the same as the restricted solid-on-s
~RSOS! model @11,12# except for one variation to incorpo
rate the global suppression: only when deposition~evapora-
tion! is attempted at the globally highest~lowest! site, is the
attempt accepted with probabilityu and rejected with prob-
ability 12u. At u51, the ordinary RSOS model is recov
ered. In equilibrium when the deposition attempt probabil
p is the same as the evaporation attempt probabilityq, SF
growth models produce an ensemble of RSOS surfaces
an exponentially decreasing weight for increasing surf
width. The equilibrium SF model in a one-dimensional~1D!
substrate hasa51/3 andz53/2 @7#, whereas the equilibrium
ordinary RSOS model belongs to Edwards-Wilkinson univ
sality class witha51/2 andz52 @13#.

Our measurement ofG(r ,t;L) for the 1D equilibrium SF
model shows an anomalous behavior. For the early-time
gime (t!Lz), G(r ,t;L) is found to satisfy Eq.~2! with dif-
ferent scaling exponentsa851/2(5” a) and z859/4(5” z).
Furthermore we foundG(r ,t;L) for the saturation regime
(t@Lz) is found to show the scaling behaviorG(r ,t;L)
5L2a f (r /Ld) with d52/3. These anomalous behaviors f
G(r ,t;L) will be shown to be understood from a scalin
theory based on the competition between the local rand
walk-like behavior and the global constraint.
©2003 The American Physical Society17-1
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The dynamic properties of the equilibrium SF model a
studied by Monte Carlo simulations. Since the finite s
effects on the height-height correlation functions are stro
when periodic boundary conditions are imposed, free bou
ary conditions are applied. Starting from a flat surface, i
hk50 for all k51, . . . ,L at t50, wherehk is the height of
thekth column, a site is chosen randomly. Since we study
equilibrium SF model only, we try to add or subtract t
column height by one with the same probability 1/2, i.e.,
set p5q51/2 throughout the simulation. If the heigh
change violates the RSOS condition, the tried attempt is
jected. Otherwise, we check if the height change bring
new extremal height. If it does not, the new configuration
accepted with probability 1. If it does, the acceptance pr
ability of the new configuration is reduced by a factor
u(,1).

For the equilibrium RSOS model without the suppress
(u51), it is well known that theW2 follows the scaling
form of Eq. ~1! with a51/2 andz52 @13#. We measure the
height-height correlation functionG̃k(r ,t;L) at sitek defined
by

G̃k~r ,t;L !5^@hk~ t !2hk1r~ t !#2&. ~5!

If one uses the periodic boundary condition for the simu
tion, G̃k(r ,t;L) is expected to be independent ofk, but the
finite size effects@or the dependence ofG̃k(r ,t;L) on the
system sizeL] are rather strong for most ofr ~say, r
.L/10) for the feasible system sizes. Therefore, we use
free boundary condition and measureG̃k(r ,t;L) for different
k values. Unlessk or k1r is very close to the boundary site
G̃k(r ,t;L) for systems with the free boundary condition,
also expected to be independent ofk. We numerically con-
firm that this is the case—no noticeable differences
G̃k(r ,t;L) are observed for different values ofk unlessk or
k1r is very close to or at the boundary sites. We meas
G̃k(r ,t;L) for r ,L/2 overL/4 different values ofk5(L/8)
11,(L/8)12, . . . ,(3L/8) and then average them to obta
G(r ,t;L):

G~r ,t;L !5
4

L (
k5(L/8)11

3L/8

h̃k~r ,t;L !. ~6!

Figure 1 shows the saturated height-height correlation fu
tion Gs(r ;L)@5G(r ,t@Lz)# for u51 with the systems size
L532, 64, 128, and 256. All the data collapse to a sin
curve andGs(r ;L) increases linearly withr indicating a8
51/2. In equilibrium, the model withu51 corresponds to a
random walk and thereforeGs(r ;L);r is expected@11,12#.
The solid line given byGs(r ;L)5 2

3 r fits the data perfectly.
There is no finite size effect due to the free boundary con
tion.

We now apply the same analysis for the SF model w
u51/2. By simulations using free boundary condition a
the system sizesL516, 32, 64, 128, and 256, we first con
firmed that the surface widthW(t,L) satisfies the generic
scaling form very well,W(t;L)/La, with a51/3 and z
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53/2. Although the exponents are are different from the c
ventional values ofa51/2 andz52 for the random-walk-
like surfaces@13#, they satisfy the generic scaling form o
Eq. ~1! very well.

However, the height-height correlation functionsGs(r ;L)
in the saturated regime (t@Lz8) for u51/2 shows quite dif-
ferent behaviors from the conventional cases. According
the generic scaling form of Eq.~2!, Gs(r ;L) is expected to
be the form of

Gs~r ;L !;r 2a8 ~7!

in free boundary condition, sincegG(x) in Eq. ~2! becomes a
constant for largex(t@r z8) for the conventional cases. Fig
ure 2 shows that this is not the case for our model withu
51/2. The saturated height-height correlation functio
Gs(r ;L) are shown in~a! for the system sizesL532, 64,
128, 256, and 512. We note thatGs(r ;L) doesdepend on the

FIG. 1. The height-height correlation function for the ordina
equilibrium RSOS model withu51 @11–13# in the saturated re-
gime (t@Lz). The solid line given byGs(r ;L)5

2
3 r fits the data

perfectly, indicating the wandering exponenta851/2.

FIG. 2. The height-height correlation functions foru51/2 in the

saturated regime (t@Lz8). ~a! Gs(r ;L) for the systems of sizesL
532, 64, 128, 256, and 512 are shown in logarithmic scale.~b! The
rescaled height-height correlation functionGs(r ;L)/L2a against the
rescaled distancer /Ld with a51/3 andd52/3.
7-2
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system sizeL being different from the case ofu51. Further-
more,Gs(r ;L) is not linear in a log-log scale plot, implying
that it does not follow the scaling behavior of Eq.~7!. There
seems to be another length scale over which the scaling
satz of Eq.~7! should be modified. We rescale the correlati
functionsGs(r ;L) by L2a andr by Ld with d52/3, and find
a nice scaling plot. In Fig. 2~b!, Gs(r ;L)/L2a are plotted
againstr /Ld. All data collapse to a single curve, implying
new scaling law for the saturated height-height correlat
function:

Gs~r ;L !5L2a f ~r /Ld!. ~8!

Note f (x).x2a8(a851/2) for x!1 and f (x).const forx

@1. In other words,Gs(r ;L) increases asr 2a8 for r ,Ld,
and reaches a constant value forr .Ld with d52/3. This
implies that the saturated correlation lengthjs(L)5j(t
@Lz) is not the system sizeL but only Ld. There is a win-
dow of the new length scaleLd. Roughly speaking, the sur
face shows a random-walk-like behavior up to the wind
size, and then feels the global constraints of the suppres
over the window size.

Our analysis on the early time (t!Lz) behavior of the
height-height correlation function also supports the conj
ture for js(L);Ld. Figure 3~a! showsG(r ,t;L) for an L
51024 system at 16 different times:t51,2,22, . . . ,215

532768. When the height-height correlation functions
small t@j(t)!js(L)# are rescaled according to the scali
form of Eq. ~2! with a851/2 and z859/4 (b5a8/z8
52/9), they collapse to a single curve representing the e
time scaling,

G~r ,t;L !5t2b f t~r /t1/z8!, ~9!

as shown in~b!. The correlation length grows ast1/z8 at the
beginning and saturates toLd when it hits the window size
„(ts)

1/z8;Ld
…, where the saturation timets is estimated by

ts;(Ld)z8;Ldz8. This should be the same as the saturat
time for the surface width which is given byLz according to
Eq. ~1!. Therefore, we have

z85z/d. ~10!

For r @t1/z8, sinceG(r ,t;L) is independent ofr, we expect
G(r ,t;L);t2a8/z8. It should be proportional toW2(t), so
that

a8/z85b. ~11!

From the relationa8/z85b5a/z we get

a85a/d. ~12!

However, as shown in the inset of Fig. 3~b!, the same
rescaled height correlation functionsG/t2b do not collapse to
a single curve for larget. We can see the clear discrepan
between the rescaled plots ast approaches toLz. ~The data
for t<Lz are shown here. The deviation becomes even la
for t.Lz.!
04611
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We investigate the dynamic scaling behavior of t
height-height correlation functions for generalt with a scal-
ing ansatz forG(r ,t;L). Since our model has a global con
straint of extremal height suppression, we introduce a g
eral scaling ansatz where the system size can s
differently from the local length,

G~r ,t;L !5b2a8G~b21r ,b2z8t,b21/dL !, ~13!

whereb22a8, b2z8, andb21/d are the scaling factors for th
height correlation function, time, and system size, resp
tively.

We first show that the choice of the above scaling fact
reproduce the scaling behaviors of Eqs.~1! and ~8!. If we
choose,b5Ld, Eq. ~13! becomes

FIG. 3. ~a! Height-height correlation functionsG(r ,t;L) for the
L51024 system fort51,2,22, . . . ,215. ~b! The rescaled height-
height correlation functionG(r ,t;L)/t2b plots against the rescale

distancer /t1/z8 with b52/9 and z859/4 (a851/2) for small t
,210!Lz. The height-height correlation functions at differe
times collapse to a single curve, indicating the validity of Eq.~2! for
small t. The inset shows the same rescaled height correlation fu
tion vs the rescaled distance for all 16 different values oft<215

5Lz. The deviations from the smallt curve is clear for larget. ~c!

G(r ,t;L)/t2b vs r /t1/z8 with L/t2/352 at t523, 26, 29, 212, and
215. All data collapse to a single curve indicating the validity of E
~15!.
7-3
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G~r ,t;L !5L2da8G~L2dr ,L2dz8t,1!

5L2ag1S r

Ld
,

t

LzD . ~14!

Now, the scaling of Eq.~1! is obtained by considering th
spatial average ofG(r ,t;L) sinceW2(t;L) is proportional to
the average. Figure 2 can be also understood from Eq.~14!
by considering at→` limit. For a give system size, th
height correlation function is expected to be saturated ev
tually and, therefore, they→` limit of the scaling function
g1(x,y) must be exist. This limit isf (x) in Eq. ~8!.

The dynamic behavior of the height-height correlati
function is obtained by consideringb5t1/z8 case of Eq.~13!.
Then we have

G~r ,t;L !5t2a8/z8GS r

t1/z8
,1,

L

t1/dz8D
5t2bg2S r

t1/z8
,

L

t1/zD . ~15!

To check this dynamic scaling behavior, we consider
height-height correlation functions with fixedL/t1/z. Then
the rescaled correlationG(r ,t;L)/t2b should be a function of
the the rescaled distancer /t1/z8 only. We measureG(r ,t;L)
for five different system sizes withL/t1/z52, L523 at t
523, L525 at t526, L527 at t529, L529 at t5212,
and L5211 at t5215 and plotG(r ,t;L)/t2b againstr /t1/z8.
As shown in Fig. 3~c!, all the scaled data collapse to a sing
curve supporting the scaling behavior of Eq.~15!. Note that
Fig. 3~b! implies thatg2(x,y) becomes independent ofy for
large y or t!Lz. This g2(x,y) for large y corresponds to
f t(x) in Eq. ~9!. However, it depends ony in general, as
shown in the inset of Fig. 3~b!.

One of the easy ways to understand the anomalous sc
behavior of G(r ,t;L) is the scaling theory based on th
p.

04611
n-

e

ng

length scaleJ(L,t), beyond which one cannot see any loc
correlation or global constraints.J(L,t) should satisfy

J~L,t !;H t1/z for t!Lz

L for t@Lz.
~16!

Now assumeG(r ,t;L)5G(r ,J(L,t)). ThenG(r ,t;L) res-
cales as

G~r ,t;L !5G@r ,J~L,t !#5b2a8G@b21r ,b21/dJ~L,t !#.

~17!

By taking b5Ld andJ5L for t@Lz we can reproduce the
scaling relationG(r ,t;L)5L2a f (r /Ld) @Eq. ~8!# for the satu-
ration regime from Eq.~17!. We can also reproduce the sca
ing relationG(r ,t;L)5t2b f t(t/r

1/z8) @Eq. ~9!# for the early-
time regime from Eq.~17! by takingb5t1/z8 andJ5t1/z for
t!Lz. From this result, we can understand that the anom
lous behavior ofG(r ,t;L) comes from the competition be
tween local the random-walk behavior and the global s
pression. A similar behavior has also been found in the s
of the local structure function of even visiting random wal
@8#.

In summary, we measured the wondering exponenta8
'1/2 and its dynamic exponentz8'9/4 from the height cor-
relation function for our model. These values are differe
from the roughness exponenta51/3 and its dynamic expo
nent z53/2 of the surface widths. This anomalous scali
behavior can be understood by assuming that the satur
correlation length is given byLd with d52/3. The correla-
tion length grows ast1/z8, and approaches a window sizeLd

asymptotically. We show that the usual way of determini
the universality class of surface model by the scaling beh
ior of the surface width only can miss many important sc
ing behaviors of the model.
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